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Abstract--The initial stages of the bag-mode liquid droplet breakup in a fluid flow are studied in both 
a liquid-gas system, e.g. a water or molten metal droplet in air, and a liquid-liquid system, e.g. an oil 
or mercury droplet in water. The Weber number and its critical value play a fundamental role in this 
consideration. An individual droplet in uniform flow is investigated. The droplet viscosity and flow 
compressibility are taken into account. The critical Weber number is shown to be dependent upon the 
Ohnesorge number and the fluid/droplet density ratio for both an incompressible fluid and supersonic 
flOW. 
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1. I N T R O D U C T I O N  

There is a wealth of literature on droplet breakup but they are mainly experimental works. The 
author is not aware of any contemporary theoretical publication. There are known to be several 
modes of droplet breakup. This paper considers one of them, the so-called bag-mode which occurs 
at small Weber numbers (We). In this mode the central part of a flattened droplet is blown up 
downstream into a bag, thus the droplet constitutes a heavy toroidal rim with a thin bag. The rim 
and bag expand; first, the rim breaks, producing a great number of fine droplets, then the bag 
disintegrates, producing larger droplets. The very complex process of droplet breakup is over. Let 
n be the rim/original droplet mass ratio. According to Lane (1951) and Lefebvre (1989), n = 0.7; 
according to Hanson et al. (1983), n = 0.75. 

What about the value of the critical Weber number We. ,  below which the droplet does not break 
up? Pilch & Erdman (1987) cited the empirical relation 

We,  = 12(1 + 1.077 ONE6), [1] 

where On is the Ohnesorge number, and stated that when On < 0.1, the droplet viscosity may be 
neglected and We,  = 12. Hanson et al. (1963) reported that the condition 10 < We,  < 16 is fulfilled 
and the largest value corresponds to the smallest original droplet diameter and the highest droplet 
viscosity. 

2. SUBJECT OF THE PAPER 

The appropriate assumptions and definitions must be presented first. Assume that, at the instant 
t = 0, a droplet of original diameter D and velocity u = 0 is introduced into a horizontal uniform 
liquid or gas flow of velocity V and density p. The Weber number is determined as 

V2D 
We = p - - ,  [2] a 

where tr is the droplet surface tension with respect to the fluid in the flow. The droplet is accelerated, 
so one needs to define the instantaneous Weber number: 

W e  i = (1 -- ~i)2We, [3] 

where • = u/V.  
Figure 1 shows the family of curves 

We i = f(d,  We), [4] 
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Figure 1. Accelerating and flattening of a droplet: l--the beginning of the blowing up of the bag; 0---radial 
velocity equal to zero. 

where d = diD; d is the instantaneous droplet diameter and We is the family parameter. It is seen 
that, at a sufficiently low Weber number We', a droplet is reversibly flattened; i.e. it returns to its 
original spherical shape. At a sufficiently large Weber number We", a droplet will break up. Curve 
I represents the beginning of  breakup, i.e. the initial blowing up of  the bag. At present, it is possible 
to give a precise definition of  the critical Weber number, namely that it is the value We,  of  the 
family parameter We when the curve We i = f (d ,  We,  ) is tangent to curve I. It is seen that at the 
point of tangency 0, the radial velocity inside the droplet is zero. 

The Ohnesorge number is expressed as 

On - kt____~__~ 

where /~a and Pa are the viscosity and density of the droplet, respectively. For  instance, at a 
temperature of  20°C and D = 0.1 mm: for water, On = 0.012; and for 100 cstk oil, On = 2.5. 

The fluid/droplet density ratio E = P/Pd is also used herein, some example values are listed in 
table 1. 

In this work, first assumptions are made about the shape of a flattened droplet and then a radial 
motion inside the droplet is studied. The relationship 

Wei = F(d, We, On, E, Ma), [6] 

where Ma is the Mach number, is derived. The extreme cases Ma = 0 and Ma > are considered. 
From [6] it is concluded that We,  is a function of  three parameters: On, E, Ma. Note that curve 
I in figure 1 depends solely upon Ma. 

3. MOTION INSIDE A D R O P L E T  

3.1. The shape of a droplet 
It is assumed that a flattened droplet takes the shape of  a flat disk with rounded edges--see figure 

2. From Guldin's theorem we obtain the relation between the radii of the disk 

(4) /~= F -  r, [7] 

Table 1 

Example 

0.0001 Molten metal in air 
0.001 Water in air 
0.01 Diesel oil in compressed air 
0.1 Mercury in water 
1 Water in oil 
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Figure 2. Assumed shape of a flattened droplet. 
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w h e r e / ~ =  R/D,  f = r /D and 

1 2 ~-~  [8] 
F = 1 2 f 3  3 " 

3.2. Motion o f  the rounded part o f  a disk 

The disk consists of  two parts: a flat part and a rounded one. The radial motion of the 
rounded part will be studied here. It is postulated that this part of  varying mass moves radially 
with velocity 

dR W ~- - - .  
dt 

By means of  figure 3, one may formulate the momentum equation 

d 
dt  (w dm) = P~ - P2 &P - 2P3 + P4 + P5 d~p, 

where 

d m =  ~ - 2nrR 2 dq~ 

and the forces will be determined successively. 
The aerodynamic force is expressed as 

[9] 

[lO] 
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Figure 3. Forces in the rounded part of a disk. 
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Figure 4. Viscous flow in the flat part of a disk----determi- 
nation of the "duct". 

Figure 5. A "duct" of zero length. 

where I is the aerodynamic coefficient due to a pressure distribution on the surface of  the rounded 
part of  the disk and q = p ( V  - u ) 2 / 2  is an instantaneous dynamic pressure. There are two surface 
tension forces: 

1'2 = a l r r  and P3 = aR dcp. 

The residual forces, i.e. pressure forces/'4 and P5, are determined after taking into consideration 
a viscous flow inside the flat part of  the disk. 

Using figures 4 and 5, we shall investigate a radial laminar flow in a "duct" between the radii 

;~ = (0.25 -- f)0.5 [111 

and R I> Ro, where /~o  = 0.452 and  r0 = 0.215 are calculated f r o m  [7] by  trial-and-error. 
Using figure 6, we formulate the momentum equation of  the shaded element 

(r - r/) dp = z d( ,  

where 

dv 

and the boundary condition has the f o r m  ~ /=  v = 0. We  obtain the velocity distribution 

dp 

and the vo lume  flow 

2 r3dp 
d Q  = g ~/Zd ~-~ dip. 

O n  the other hand, the vo lume  flow is equal to  2wrR dip, where  w is determined by  [9], hence 
we find the relation 

3wR/z d d( 
dp= r2 ~ ,  

,= r 
r I 

Figure 6. Derivation of the velocity distribution in the "duct". 
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which integrated from z to R takes the desired form 

Ap = 3wR: d In --,R [12] 
r -  z 

where z is defined by [11]. 
At last, it is possible to express the pressure forces/'4 and P5. We return to figure 6 and assume 

that at ~ = z the pressure is equal to the dynamic pressure q and at ~ = R the pressure is equal 
to (q - A p ) ,  where Ap is expressed by [12]. Therefore, we find 

P4 = (q - Ap)2rR dgo. 
When ~ --R + r, then the pressure inside the droplet is defined by the Laplace formula 

P°= °( 1 +R--~r)" [13] 

Now, we make the simplifying assumption: in the rounded part of  the disk there is a constant 
pressure equal to the arithmetic mean of  the pressure values at ~ = R and ~ = R + r, hence we can 
write 

~zr 2 
e5 =½(q - Ap +po)-y, 

when pC is defined by [13]. 

4. G O V E R N I N G  E Q U A T I O N S  

We rewrite [9] in the dimensionless form 

d~ ~ d~ 

where 

and F is defined by [8]. 
Similarly, we derive 

~, = w/V, 

V : t ,  T=-~ 

d~ _ F  / 1 ~ 2 ~2~-i 
d ~  = [ ~ - ~  + -~ F + -~ - g / 

E l x//~ 2 ~ +  =x/~(l-- t~)z~ 2 ( 1 + l ) 7 + - ~ +  ~ + 

_ 60~_nw~in R / R 3 \ ~x//~ / 
x /We ~ ~67 + 4 x) +-4 W--e'~,~ + R 

[14] 

where 6 = 0 if ~ >I 0.215 and 6 ffi 1 If ~ < 0.215; We and On are determined by [2] and [5], 
respectively; ~ and R are connected by [7]. 

We formulate a translatory momentum equation which has the dimensionless form 

ddT = 3 : [ C d l  ~'2 + Cd2(21:R + ~2)](1 - u) 2, [16] 

T a b l e  2 

Flow Cd~ Cd2 
Ma -- 0 I 0.4 
Ma > I 1.4 I 

8R 3) [15] 
/ O F  
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Figure 7. Transition at We, of the disk into the torus with a flat bag. 

where Cd, and Cd2 are the drag coefficients of the flat and rounded parts, respectively, of the disk. 
According to Hetsroni (1982), one may assume values of the drag coefficients, as in table 2. 

Relations [14]-[16] constitute the equations governing the flattening of a droplet. There are: an 
argument T; three unknowns ~:, ~, ~; three parameters We, On, ~; and three material constants 
1, Cd,, Cd2 which depend upon Ma. The above equations have the initial condition: 

T = 6 = ~ = 0 ,  f = 0 . 5  

and may be integrated to curve I in figure 1. 

5. T H E  B E G I N N I N G  O F  T H E  B L O W I N G  U P  O F  T H E  B A G  

Returning to figure 1, we repeat: at the point of tangency 0, the radial velocity becomes zero 
and a bag begins to appear (blow up) downstream. Our aim is solely to determine curve I. To this 
end, we postulate that, at the point 0, a disk with rounded edges travels into the torus with a flat 
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Figure 8. Beginning of the blowing up of the bag at We,.  Figure 9. Influence of ~ on droplet breakup. 
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bag, as figure 7 shows, it has a constant diameter and a given value of the ratio n. Therefore, we 
can write the relations 

R ,  + ~ .  = ~ , + i , ;  ,.~,8:.=n/12n. [17] 

Naturally, during the transition the total energy is unchanged: the kinetic energy of the radial 
motion is simply equal to zero and the surface areas of the disk and torus are nearly the same. 

On the torus with the flat bag a drag is exerted. The bag is held by the surface tension. When 
the bag begins to blow up, then the following condition must be fulfilled: 

C d l q , 7 [ S 2 *  - -  Cd:q,lt[(S, + s , )  2 - $2,] = 4=o'S,, 

Cd, ~ .  -- C,m 2~. + ~** j  = ( I  -- ~ . )2We. "  

which may be rewritten as 

[181 

By means of  the above condition and [17] the curves in figure 8 have been plotted, they are clearly 
curve I from figure 1. As has been demonstrated, curve I depends upon the flow compressibility 
and the ratio n. Note that in the experiment a value of n = 0.7 to 0.75 was observed. 

6. RESULTS 

As has been shown, We.  is a function of the constants 1, n, Cd, and Ca2 and of the parameters 
~, On and Ma. The values 1 = 0.59 and n = 0.75 are fixed and the values of Cd, and C,u are taken 
from table 2. Let We.~, 3 .  and T ,  denote the instantaneous Weber number and dimensionless 
droplet diameter and time corresponding to the beginning of the blowing up of the bag at We. .  
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Figure I0. Influence of On and Ma on droplet breakup. 
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The above quantities are plotted in figure 9 as functions of E and in figure 10 as function of On. 
Figure 10 also shows the influence of the flow compressibility. 

7. CONCLUSIONS 

I. The influence of E and Ma on We, is negligible. 
2. The influence of On on We, is significant over the whole range of On; it is not true that when 

On < 0.1 then We, = 12. 
3. The time T ,  depends merely upon On. 
4. This paper deals with an individual droplet in uniform flow. In the opposite case, there is a 

mutual interaction between the droplets and flow (e.g. Tarnogrodzki & Pyzik 1991) and the 
above conclusions need to be modified or changed. 
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